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Airfoil Wave-Drag Prediction Using Euler Solutions
of Transonic Flows
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The objective of the present work is the evaluation of four airfoil wave-drag prediction methods based
on solutions of the Euler equations. In the case of two-dimensional inviscid � ows of interest here, it is shown
that the expression based on a volume integration of a positive de� nite quantity related to the arti� cial
viscosity systematically underestimates the wave drag. In contrast with the popular belief, it is demonstrated
that no clear improvement, in terms of accuracy, results from the use of far-� eld methods with respect to
body-surface pressure integration. However, drag predictions obtained with entropy-based expression ap-
plied on a surface containing only the shocks are less sensitive to high levels of false entropy production
because the drag contribution associated with false entropy production is eliminated. Furthermore, in three-
dimensional � ows, the wave and induced drag can be distinguished. A new method is proposed to correct
the body-surface pressure integration estimates that is less sensitive to the level of false entropy production.

Nomenclature
CDgar = Garabedian wave-drag coef� cient, Eq. (20)
CDm = momentum-� ux drag coef� cient, Eq. (14)
C 9Dm = CDm with arti� cial viscosity contributions, Eq. (15)
CDosw = Oswatitsch wave-drag coef� cient, Eq. (18)
CDoswushock

= Oswatitsch wave-drag coef� cient integrated on
the shock, Eq. (19)

CDp = pressure drag coef� cient, Eq. (13)
corrCDp = corrected body-surface pressure integration

coef� cient, Eq. (21)
CDs = exact Oswatitsch wave-drag coef� cient, Eq. (16)
CDsushock

= exact Oswatitsch wave-drag coef� cient integrated
on the shock, Eq. (17)

c = airfoil chord
cv = constant-volume speci� c heat
D = total drag
dS = differential surface
e = speci� c internal energy
i = unit vector in freestream direction
M` = freestream Mach number
n = unit outward vector normal to dS
p = pressure
q = velocity vector
R = ideal gas constant
r = distance between the body surface and the

integration surface, Fig. 3a
S = integration surface in the far � eld enclosing the

body
SB = body surface
Sshock = integration surface enclosing the vicinity of the

shocks
s = speci� c entropy
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U` = freestream velocity
u = velocity component in the freestream direction

2\ w \ WD = positive de� nite quantity, Eq. (9)
a = angle of attack
g = speci� c heat ratio
m = arti� cial viscosity
r = density
t = arti� cial viscous stress tensor

Subscript
` = freestream value

Introduction

I N the � eld of aircraft design, accurate prediction of drag is
an essential requirement for performance predictions as

well as fuel consumption reduction. During a drag-reduction
procedure, an evaluation of the total drag of a wing by the
body-surface integration of pressure and viscous shear is not
suf� cient. The total drag must be evaluated in terms of its
components (boundary layer, induced, and wave drags) to
identify the source of abnormally high drag production.

In this work, various methods for the evaluation of the wave
drag are presented and implemented for airfoils. The � rst
method involves Oswatitsch’s drag expression,1 relating wave
drag to the rate of entropy production through the shock
waves. An integration of the rate of entropy production on a
closed surface enclosing the body yields the wave drag. Two
types of surfaces are considered: surfaces enclosing the body
and a suitable surface enclosing only the shocks. The second
method involves Garabedian’s volume integration,2,3 developed
from the entropy inequality that is fundamental to the method
of arti� cial viscosity. This method relates the rate of entropy
production to the explicit arti� cial viscosity terms typically
introduced in inviscid � ow solvers and, thus, transforms the
far-� eld surface integration of the rate of entropy production
to a volume integration of a positive de� nite quantity over the
entire calculation domain. The wave drag is also evaluated
from integration of the body-surface pressure and by a far-
� eld momentum-� ux integration.

Inviscid Flow Calculations
The two-dimensional Euler solver used in this work is a

� nite volume cell-centered scheme with second- and fourth-
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Fig. 1 Typical O-grid used to discretize the calculation domain.

order arti� cial viscosity.4 The governing equations are inte-
grated in time using a � fth-order Runge– Kutta time-stepping
scheme. A structured O-grid is used to discretise the calcula-
tion domain (see Fig. 1). This Euler solver is similar to a wide
range of solvers used in the aircraft community. It is to be
noted that the conclusions and recommendations of this work
apply to any conservative Euler solver.

Wave-Drag Calculations
In inviscid � ow, the total drag D acting on a body results

from the pressure distribution over SB, and is given by the
following body-surface integral:

D = 2 pn ? i dS (1)E
SB

For the two-dimensional inviscid � ows of interest here, the
total drag of Eq. (1) is the wave drag, and the surface integral
reduces to a contour integral. For the evaluation of the pro� le
drag, which is the sum of the surface friction drag and the
boundary-layer pressure drag, viscous/inviscid solutions or
Navier– Stokes solutions must be analyzed. This is the expres-
sion most commonly used for the evaluation of the drag and
it will be referred to as the ‘‘body-surface pressure integration’’
in this work. The drag coef� cient computed using this expres-
sion will be denoted CDp.

A far-� eld expression for the drag can be derived using the
momentum equations applied on any control volume enclosing
the body of interest:

D = 2 ( pn ? i 1 ruq ? n) dS (2)E
S

Equation (2) relates the drag to a far-� eld momentum-� ux in-
tegral. The drag coef� cient calculated using this momentum-
� ux integral will be denoted CDm.

Oswatitsch’s Expression

Oswatitsch has derived an approximate expression relating
the wave drag to the rate of entropy production in a steady
adiabatic inviscid � ow of an ideal gas.1 In such a � ow, it is
possible to relate the momentum de� cit to the rate of entropy
production using the following procedure.

First, using the conservation of mass principle over the con-

trol volume, the far-� eld expression for the drag of a body
[Eq. (2)] can be expressed as

u
D = 2 ( p 2 p )n ?i 2 U 1 2 rq ?n dS (3)` `E F S D GU`S

Assuming the � uid to be an ideal gas and the � ow to be adi-
abatic, the expression of the conservation of the energy can be
expressed as

2 [(g2 1)/g]
q 2 p s 2 s`

= 1 1 1 2 exp (4)S D H F S DG J2U (g 2 1)M p R` ` `

When the surface of integration S is suf� ciently far from the
body, the only signi� cant component of the velocity vector is
u, p ’ p`, and we can obtain the following expression:

u q
1 2 ’ 1 2 = 1S D S DU U` `

2 s 2 s g 2 1`Î2 1 1 1 2 expH FS DS DGJ2(g 2 1)M R g`

(5)

Finally, introducing Eq. (5) in Eq. (3) yields

2 s 2 s g 2 1`ÎD = U 1 2 1 1 1 2 exp rq ? n dS (6)`E H FS D S DGJF G2(g 2 1)M R g`S

This equation is based on the exact relation between entropy
production and wave drag in inviscid � ows and will be re-
ferred to as the exact Oswatitsch’s expression. The drag co-
ef� cient computed with this expression will be denoted CDs. It
is to be noted that this equation is valid only when there is no
powered engines within the closed surface S. An extension of
this expression, when powered engines are included, has been
presented by Cummings et al.5 Furthermore, the Oswatitsch
expression, and any other entropy-based expressions, are not
applicable to isentropic solutions such as those produced by
the full-potential equation. In such � ows, a speci� c formula
has been derived6 that relates the wave drag to the momentum
gain through the isentropic shock.

The surface of integration S used to derive this expression
was assumed to enclose the body and to be far from it. How-
ever, any surface of integration that encloses only the imme-
diate vicinity of the shock waves can be used because the
entropy changes occur only through the shocks and q ? n = 0
on SB. When a surface of integration enclosing only the im-
mediate vicinity of the shocks is used to compute the drag
based on the exact Oswatitsch’s expression, the drag coef� -
cient will be denoted .CDsushock

Expansion of the integrand of Eq. (6) to the lowest order in
(s 2 s`) leads to the so-called ‘‘approximate Oswatitsch’s ex-
pression’’

U`
D = (s 2 s )rq ?n dS (7)`E2gRM ` S

The drag coef� cient computed by applying Oswatitsch’s ex-
pression1 on an integration surface enclosing the body will be
denoted CDosw. When S in Eq. (7) encloses only the shock
waves, the drag coef� cient will be denoted .CDoswushock

Garabedian’s Volume Integration

Garabedian2 proposed an alternative way of calculating
wave drag based on a volume integration over the entire � ow-
� eld. In this method, the rate of entropy production is related
to the explicit arti� cial viscosity typically introduced in invis-
cid � ow solvers and, thus, the far-� eld surface integration of
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the rate of entropy production, derived by Oswatitsch [see Eq.
(7)], is transformed into a volume integration of a positive
de� nite quantity related to the arti� cial viscosity over the entire
calculation domain.

Assuming steady-state � ows and neglecting the fourth-order
arti� cial viscosity terms introduced in the Euler equations, an
expression relating entropy production and arti� cial viscosity
can be derived2,3

c r c r=e c =pv v v2= ?rsq = \w \ 1 = ?m s=r 1 1 (8)WD S De e e

where

2 2 2\ w \ = \=u \ 1 \=v \WD

2 2

=p g 1 1 =p =r =r
1 ge 2 , 1 (9)SI I I I I I Dp g p r r

with, for example

T=p =r =p =r2\w \ = \w, w \ and , = mI Ip r p r

Equation (8) may be integrated over the � ow domain V. If
V is the entire � ow domain, the left-hand side of Eq. (8) re-
duces to an integration at the outer surface S because q ? n = 0
on SB, and the second integral on the right-hand side may be
neglected.3 Thus

c rv 2rsq ?n dS = \w \ dV (10)WDE E eS V

Using the integral expression of the conservation of mass, one
can easily show that

rsq ?n dS = r(s 2 s )q ?n dS (11)`E E
S S

This last expression can be combined with Eqs. (7) and (10)
to give

U c r` v 2D = \w \ dV (12)WDE2gRM e` V

which is the expression between the wave drag and the volume
integration of a positive de� nite quantity related to the arti� cial
viscosity . It will be referred to as ‘‘Garabedian’s vol-2( \w \ )WD

ume integration.’’ The drag coef� cient calculated using Eq.
(12) will be denoted CDgar. Details concerning the derivation
of this expression can be found in Ref. 3.

Results and Discussion
The results presented in this section pertain to the inviscid,

compressible � ow over a NACA 0012 airfoil. The drag ex-
pressions developed in the previous section have been imple-

mented in the Euler solver described previously. More specif-
ically, the following eight expressions have been used:

1
C = 2 pn ? i dS (13)Dp E21/2r U c` ` SB

1
C = (2pn ? i 2 ruq ?n) dS (14)Dm E21/2r U c` ` S

1
C 9 = C 1 (t ?n)? i dS (15)Dm Dm E21/2r U c` ` S

1 1 s 2 s g 2 1`ÎC = U 1 2 1 1 1 2 exp rq ?n dS (16)Ds ` E H FS D S DGJS D2 21/2r U c (g 2 1)M R g` ` `S

1 2 s 2 s g 2 1`ÎC = U 1 2 1 1 1 2 exp rq ?n dS (17)Dsu ` E H FS D S DGJS D2 2shock 1/2r U c (g 2 1)M R g` ` `Sshock

1 U`
C = (s 2 s )rq ?n dS (18)Dosw `E2 21/2r U c gRM` ` ` S

1 U`
C = (s 2 s )rq ?n dS (19)Doswu `E2 2shock 1/2r U c gRM` ` ` Sshock

1 U c r` v 2C = \w \ dV (20)Dgar WDE2 21/2r U c gRM e` ` ` V

In these expressions, S, the contour enclosing the body, is
taken as the contour de� ned by a speci� c O-line of the grid
used to produce the Euler solutions (see Fig. 1). Drag coef� -
cient calculations have been performed for each O-line, from
the body surface to the outer surface of the calculation domain.
Sshock is a contour enclosing only the immediate vicinity of the
shocks to eliminate the false-entropy drag contribution typi-
cally observed near the stagnation point. The drag coef� cient
that includes both the momentum and arti� cial viscous stress
contributions, , has been implemented to quantify the rel-C9Dm

ative importance of the arti� cial viscous stresses in the � ow.
Because the � ow solver is based on a conservative formu-

lation, the drag coef� cient based on the body-surface pressure
integration (CDp) should be exactly equal to . This is indeedC9Dm

the case with the Euler solutions presented in this section.
Therefore, the values of CDp and are indistinguishable inC9Dm

all of the � gures presented in this paper. In regions where the
arti� cial viscous stresses are negligible, CDm should also be
very close to CDp.

Drag predictions using Eqs. (16– 20) largely rely on the
quality of the solution with respect to the entropy distribution.
Figure 2a illustrates typical entropy distributions produced by
the two-dimensional Euler solver used in this work. False en-
tropy production is noted in the vicinity of the body surface
and, more speci� cally, near the stagnation point (see Fig. 2b).

Figure 3a shows the variation of the eight drag estimates
with respect to S, the chosen surface of integration enclosing
the airfoil, characterized by its radial distance r from the body
surface. The values of and are calculated onC CDsu Doswushock shock

an integration surface that encloses only the immediate vicinity
of the shocks. Therefore, these drag estimates are not functions
of r /c, so that they are presented as constant in Fig. 3a. In this
� gure CDgar is given in the legend because its value lies outside
of the illustrated scale. In fact, as the freestream Mach number
increases, it has been observed that Garabedian’s volume in-
tegration leads to signi� cantly lower wave-drag estimates than
the predictions based on the other expressions (see Table 1).
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Fig. 2 M` = 0.85, a = 0.00, 160 3 40 O-grid: a) entropy contours
and b) surface distribution.

Fig. 3 Drag predictions based on different integration contours
— M` = 0.85, a = 0.00, 160 3 40 O-grid: a) without and b) with
weighting function.

A remarkable behavior illustrated in Fig. 3a is the fact that
when the chosen integration surface is far enough from the
body (r/c > 4), the values of CDp, CDm, , and CDs are es-C9Dm

sentially constant and in very good agreement with one an-
other.

The values of CDs and CDosw vary for r/c < 4 because the
integration surface does not enclose the shocks completely.
The difference between and CDm, again noted for r /c < 4,C9Dm

is produced by the arti� cial viscous stress contribution.
The drag estimate based on Oswatitsch’s expression, CDosw,

is lower than the previously noted unique value of CDp, CDm,
and . This discrepancy is attributed to the � rst-order ap-C9Dm

proximation in (s 2 s`) introduced to obtain Eq. (7). This
approximation produces an error that grows with M`. At lower
freestream Mach numbers, the difference between the drag es-
timate based on CDs and CDosw tends to zero (see Fig. 4a). At
such low freestream Mach numbers, the four drag estimates
CDm, , DDs, and CDosw are essentially equal (see Table 1).C 9Dm

The very good agreement between the drag estimates CDp,
CDm, , and CDs clearly indicates that no signi� cant improve-C9Dm

ment, in terms of accuracy, results from the use of a far-� eld
approach with respect to a simple body-surface pressure inte-
gration. Similar conclusions have been drawn by Varma and
Caughey7 in the context of two-dimensional Navier– Stokes so-
lutions. Nevertheless, many researchers attribute the poor re-
sults obtained with body-surface pressure integration to the
discretization of the body surface into panels: the pressure in-
tegration was thought to be less accurate on this surface lead-

ing to unsatisfactory pressure coef� cients, particularly with
coarser grids.8– 10 In fact, the discrepancies noted between the
pressure coef� cient and the far-� eld coef� cients are caused by
the false entropy production near the stagnation point generally
produced by Euler � ow solvers.

Integration of the rate of entropy production on a surface
enclosing only the immediate vicinity of the shocks, CDsushock

and , produces drag estimates that are lower than theCDoswushock

essentially unique value of CDp, CDm, , and CDs becauseC 9Dm

such surface of integration allows removal of the drag contri-
bution associated with false entropy production near the stag-
nation point. In fact, it is this capacity to eliminate the false
entropy production contribution that represents the main ad-
vantage of drag calculation methods based on the integration
of the rate of entropy production. Furthermore, in three-di-
mensional inviscid � ows (not considered here), such entropy-
based drag predictions allows one to distinguish the wave drag
from the induced drag. In contrast, only the total drag is com-
puted using body-surface pressure integration or far-� eld mo-
mentum-� ux integration, when analyzing three-dimensional
inviscid � ows.

Yu et al.11 mentioned that the false entropy production is
mainly caused by inaccurate calculation of the arti� cial dissi-
pation terms at the body surface, and proposed to apply a
weighting function to scale the viscous dissipation terms in the
normal direction so that they are gradually turned on from the
body surface to the far � eld. The effects of this enhancement
on drag prediction are illustrated in Figs. 3b and 4b. It is seen
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Table 1 Summary of drag predictions, 160 3 40 O-grid

M` a deg

Present solution CD (3104)

CDp CDm C9Dm CDs CDsu shock
CDosw CDoswu shock

CDgar
corrCDp

0.74 0.00 6 6 6 6 0 6 0 3 0
0.76 0.00 9 9 9 9 4 9 4 5 4
0.78 0.00 30 30 30 30 25 30 25 22 25
0.80 0.00 89 89 89 89 84 89 84 69 84
0.82 0.00 197 197 197 197 192 196 190 155 192
0.85 0.00 461 461 461 461 456 455 449 362 456

Table 2 Effects of grid re� nement on drag predictions, M` = 0.85, a = 0.00

O-grid

Present solution CD (3104)

CDp CDm C 9Dm CDs CDsu shock
CDosw CDoswu shock

CDgar
corrCDp

160 3 40 461 461 461 461 456 455 449 362 456
128 3 32 469 469 469 469 462 463 455 367 462
80 3 20 486 486 486 486 470 480 463 379 470

Fig. 4 Drag predictions based on different integration contours
— M` = 0.78, a = 0.00, 160 3 40 O-grid: a) without and b) with
weighting function.

that the drag contribution associated to false entropy produc-
tion, represented by the differences (CDs 2 ) and (CDoswCDsushock

2 , is reduced when such weighting is applied. InC )Doswushock

the present work, only the results presented in Figs. 3b and 4b
have been obtained using this enhancement. Ultimately, if all
false entropy production in the � ow� eld could be eliminated,

the drag coef� cients CDp, CDm, , CDs, and would beC9 CDm Dsushock

equal so that any of these methods would be equivalent.
The behavior of the various drag estimates with respect to

grid re� nement is presented in Table 2. It has been observed
that the false entropy production increases with coarser grids.
This behavior leads to higher estimates of drag on coarse grids
compared to � ne ones. A correction procedure can be proposed
for the body-surface pressure coef� cient that could be useful,
particularly on coarse grids. The difference (CDs 2 C )Dsushock

gives an indication of the contribution of the false entropy to
the total drag CDp. A corrected body-surface pressure integra-
tion coef� cient is given bycorrCDp

corrC = C 2 (C 2 C ) . C (21)Dp Dp Ds Dsu Dsushock shock

The corrected pressure coef� cients are given in the last column
of Tables 1 and 2. These estimates are clearly less sensitive to
the level of false entropy production and are in perfect agree-
ment with the estimates.CDsushock

Conclusions
In this work, eight different techniques for the evaluation of

the wave drag have been presented and implemented for air-
foils. These various techniques have been derived from the
application of Oswatitsch’s expression1, Garabedian’s volume
integration2, body-surface pressure integration, and far-� eld
momentum-� ux integration. Results are presented for the in-
viscid compressible � ow over a NACA 0012 airfoil. It has
been shown that the application of Garabedian’s volume in-
tegration leads to signi� cantly lower wave-drag estimates than
the predictions based on the other expressions. In contrast with
popular belief, it is demonstrated that, for two-dimensional in-
viscid � ows considered in this paper, there is no advantage, in
terms of accuracy, of using far-� eld methods. No signi� cant
differences are noted among the drag predictions based on Os-
watitsch’s expression, a momentum-� ux integral, and a simple
body-surface pressure integration, provided appropriate inte-
gration surfaces are selected and false entropy production near
the body surface is negligible. However, drag prediction meth-
ods based on the integration of the rate of entropy production,
such as Oswatitch’s expression, allow the distinction of the
wave drag and induced drag in three-dimensional � ows. In
contrast, only the total drag is computed using body-surface
pressure integration or far-� eld momentum-� ux integration,
when analyzing three-dimensional inviscid � ows. Drag predic-
tions based on Oswatitsch’s expression applied on a surface
containing only the shocks are less sensitive to high levels of
false entropy production because the drag contribution asso-
ciated with false entropy production is eliminated. A method
was proposed to improve the accuracy of the body-surface
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pressure integration estimates that is less sensitive to the level
of false entropy production.
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