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Airfoil Wave-Drag Prediction Using Euler Solutions
of Transonic Flows
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Ecole de Technologie Supérieure, Montréal, Québec H3C 1K3, Canada

and
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The objective of the present work is the evaluation of four airfoil wave-drag prediction methods based
on solutions of the Euler equations. In the case of two-dimensional inviscid flows of interest here, it is shown
that the expression based on a volume integration of a positive definite quantity related to the artificial
viscosity systematically underestimates the wave drag. In contrast with the popular belief, it is demonstrated
that no clear improvement, in terms of accuracy, results from the use of far-field methods with respect to
body-surface pressure integration. However, drag predictions obtained with entropy-based expression ap-
plied on a surface containing only the shocks are less sensitive to high levels of false entropy production
because the drag contribution associated with false entropy production is eliminated. Furthermore, in three-
dimensional flows, the wave and induced drag can be distinguished. A new method is proposed to correct
the body-surface pressure integration estimates that is less sensitive to the level of false entropy production.

Nomenclature
Coear = Garabedian wave-drag coefficient, Eq. (20)
Com = momentum-flux drag coefficient, Eq. (14)
bm = Cpn, With artificial viscosity contributions, Eq. (15)

Cosw = Oswatitsch wave-drag coefficient, Eq. (18)

Crooswl,,, = Oswatitsch wave-drag coefficient integrated on
the shock, Eq. (19)

Cop = pressure drag coefficient, Eq. (13)

Coy = corrected body-surface pressure integration
coefficient, Eq. (21)

Chs = exact Oswatitsch wave-drag coefficient, Eq. (16)

Cpy,.. = exactOswatitsch wave-drag coefficient integrated
on the shock, Eq. (17)

c = airfoil chord

c, = constant-volume specific heat

D = total drag

ds = differential surface

e = specific internal energy

i = unit vector in freestream direction

M. = freestream Mach number

n = unit outward vector normal to dS

p = pressure

q = velocity vector

R = ideal gas constant

r = distance between the body surface and the
integration surface, Fig. 3a

S = integration surface in the far field enclosing the
body

Sy = body surface

S shock = integration surface enclosing the vicinity of the
shocks

s = specific entropy
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U. = freestream velocity

u = velocity component in the freestream direction
|wll%n = positive definite quantity, Eq. (9)

a = angle of attack

v = specific heat ratio

n = artificial viscosity

p = density

T = artificial viscous stress tensor

Subscript

0 = freestream value

Introduction

N the field of aircraft design, accurate prediction of drag is

an essential requirement for performance predictions as
well as fuel consumption reduction. During a drag-reduction
procedure, an evaluation of the total drag of a wing by the
body-surface integration of pressure and viscous shear is not
sufficient. The total drag must be evaluated in terms of its
components (boundary layer, induced, and wave drags) to
identify the source of abnormally high drag production.

In this work, various methods for the evaluation of the wave
drag are presented and implemented for airfoils. The first
method involves Oswatitsch’s drag expression,' relating wave
drag to the rate of entropy production through the shock
waves. An integration of the rate of entropy production on a
closed surface enclosing the body yields the wave drag. Two
types of surfaces are considered: surfaces enclosing the body
and a suitable surface enclosing only the shocks. The second
method involves Garabedian’s volume integration,™ developed
from the entropy inequality that is fundamental to the method
of artificial viscosity. This method relates the rate of entropy
production to the explicit artificial viscosity terms typically
introduced in inviscid flow solvers and, thus, transforms the
far-field surface integration of the rate of entropy production
to a volume integration of a positive definite quantity over the
entire calculation domain. The wave drag is also evaluated
from integration of the body-surface pressure and by a far-
field momentum-flux integration.

Inviscid Flow Calculations

The two-dimensional Euler solver used in this work is a
finite volume cell-centered scheme with second- and fourth-
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Fig. 1 Typical O-grid used to discretize the calculation domain.

order artificial viscosity.* The governing equations are inte-
grated in time using a fifth-order Runge-Kutta time-stepping
scheme. A structured O-grid is used to discretise the calcula-
tion domain (see Fig. 1). This Euler solver is similar to a wide
range of solvers used in the aircraft community. It is to be
noted that the conclusions and recommendations of this work
apply to any conservative Euler solver.

trol volume, the far-field expression for the drag of a body
[Eq. (2)] can be expressed as

D = —f [(p - p-n-i — U. (1 - UL> pq'n} s (3)

Assuming the fluid to be an ideal gas and the flow to be adi-
abatic, the expression of the conservation of the energy can be
expressed as
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When the surface of integration S is sufficiently far from the
body, the only significant component of the velocity vector is
u, p ~ p., and we can obtain the following expression:
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(5)

Finally, introducing Eq. (5) in Eq. (3) yields
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Wave-Drag Calculations

In inviscid flow, the total drag D acting on a body results
from the pressure distribution over Sp and is given by the
following body-surface integral:

D:f — pn-idS (1)
SE

For the two-dimensional inviscid flows of interest here, the
total drag of Eq. (1) is the wave drag, and the surface integral
reduces to a contour integral. For the evaluation of the profile
drag, which is the sum of the surface friction drag and the
boundary-layer pressure drag, viscous/inviscid solutions or
Navier-Stokes solutions must be analyzed. This is the expres-
sion most commonly used for the evaluation of the drag and
it will be referred to as the “body-surface pressure integration”
in this work. The drag coefficient computed using this expres-
sion will be denoted Cp,

A far-field expression for the drag can be derived using the
momentum equations applied on any control volume enclosing
the body of interest:

D=—f(pn~i+ pugq-n) dS (2)

Equation (2) relates the drag to a far-field momentum-flux in-
tegral. The drag coefficient calculated using this momentum-
flux integral will be denoted Cpy,.

Oswatitsch’s Expression

Oswatitsch has derived an approximate expression relating
the wave drag to the rate of entropy production in a steady
adiabatic inviscid flow of an ideal gas.1 In such a flow, it is
possible to relate the momentum deficit to the rate of entropy
production using the following procedure.

First, using the conservation of mass principle over the con-

This equation is based on the exact relation between entropy
production and wave drag in inviscid flows and will be re-
ferred to as the exact Oswatitsch’s expression. The drag co-
efficient computed with this expression will be denoted Cp,. It
is to be noted that this equation is valid only when there is no
powered engines within the closed surface S. An extension of
this expression, when powered engines are included, has been
presented by Cummings et al.”> Furthermore, the Oswatitsch
expression, and any other entropy-based expressions, are not
applicable to isentropic solutions such as those produced by
the full-potential equation. In such flows, a specific formula
has been derived® that relates the wave drag to the momentum
gain through the isentropic shock.

The surface of integration S used to derive this expression
was assumed to enclose the body and to be far from it. How-
ever, any surface of integration that encloses only the imme-
diate vicinity of the shock waves can be used because the
entropy changes occur only through the shocks and ¢-n = 0
on Sz When a surface of integration enclosing only the im-
mediate vicinity of the shocks is used to compute the drag
based on the exact Oswatitsch’s expression, the drag coeffi-
cient will be denoted Cpy,,.

Expansion of the integrand of Eq. (6) to the lowest order in
(s — s.) leads to the so-called “approximate Oswatitsch’s ex-
pression”

.U
" NRM?

f(s — s.)pg-n dS )

The drag coefficient computed by applying Oswatitsch’s ex-
pression' on an integration surface enclosing the body will be
denoted Cposw- When S in Eq. (7) encloses only the shock
waves, the drag coefficient will be denoted Cpogwy,,,-

Garabedian’s Volume Integration

Garabedian® proposed an alternative way of calculating
wave drag based on a volume integration over the entire flow-
field. In this method, the rate of entropy production is related
to the explicit artificial viscosity typically introduced in invis-
cid flow solvers and, thus, the far-field surface integration of
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the rate of entropy production, derived by Oswatitsch [see Eq.
(7)], is transformed into a volume integration of a positive
definite quantity related to the artificial viscosity over the entire
calculation domain.

Assuming steady-state flows and neglecting the fourth-order
artificial viscosity terms introduced in the Euler equations, an
expression relating entropy production and artificial viscosity
can be derived™

c, , c,pVe c.V
V- psq =7p [wlon + V- (sz + pT + Tp> (®)

mented in the Euler solver described previously. More specif-
ically, the following eight expressions have been used:

1
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Equation (8) may be integrated over the flow domain V. If
V is the entire flow domain, the left-hand side of Eq. (8) re-
duces to an integration at the outer surface S becauseg-n =0
on Sp and the second integral on the right-hand side may be
neglected.” Thus

fpsq-n dS=fC‘iIWI€‘q)dV (10)
S 1% e

Using the integral expression of the conservation of mass, one
can easily show that

fpsq-n ds = f p(s — s.)g-n dS 11
S S

This last expression can be combined with Eqs. (7) and (10)
to give

U. c,p 5
D=—— | — wo dV 12
YRM?> J;/ . w o (12)

which is the expression between the wave drag and the volume
integration of a positive definite quantity related to the artificial
viscosity (||w]|%p). It will be referred to as “Garabedian’s vol-
ume integration.” The drag coefficient calculated using Eq.
(12) will be denoted Cpg, Details concerning the derivation
of this expression can be found in Ref. 3.

Results and Discussion
The results presented in this section pertain to the inviscid,
compressible flow over a NACA 0012 airfoil. The drag ex-
pressions developed in the previous section have been imple-

1 U.
Crow = —— —— — s)pg-mdS (18
D 1/2pxU;c'yRM;£(s s-)pq-n (18)
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In these expressions, S, the contour enclosing the body, is
taken as the contour defined by a specific O-line of the grid
used to produce the Euler solutions (see Fig. 1). Drag coeffi-
cient calculations have been performed for each O-line, from
the body surface to the outer surface of the calculation domain.
Shock 18 @ contour enclosing only the immediate vicinity of the
shocks to eliminate the false-entropy drag contribution typi-
cally observed near the stagnation point. The drag coefficient
that includes both the momentum and artificial viscous stress
contributions, Cpy, has been implemented to quantify the rel-
ative importance of the artificial viscous stresses in the flow.

Because the flow solver is based on a conservative formu-
lation, the drag coefficient based on the body-surface pressure
integration (Cp,) should be exactly equal to Cp,. This is indeed
the case with the Euler solutions presented in this section.
Therefore, the values of Cp, and Cp, are indistinguishable in
all of the figures presented in this paper. In regions where the
artificial viscous stresses are negligible, Cp,, should also be
very close to Cp,.

Drag predictions using Eqs. (16-20) largely rely on the
quality of the solution with respect to the entropy distribution.
Figure 2a illustrates typical entropy distributions produced by
the two-dimensional Euler solver used in this work. False en-
tropy production is noted in the vicinity of the body surface
and, more specifically, near the stagnation point (see Fig. 2b).

Figure 3a shows the variation of the eight drag estimates
with respect to S, the chosen surface of integration enclosing
the airfoil, characterized by its radial distance r from the body
surface. The values of Cpy, , and Cpew,, , are calculated on
an integration surface that encloses only the immediate vicinity
of the shocks. Therefore, these drag estimates are not functions
of r/c, so that they are presented as constant in Fig. 3a. In this
figure Cpy, is given in the legend because its value lies outside
of the illustrated scale. In fact, as the freestream Mach number
increases, it has been observed that Garabedian’s volume in-
tegration leads to significantly lower wave-drag estimates than
the predictions based on the other expressions (see Table 1).
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Fig.2 M. =0.85,a =0.00,160 X 40 O-grid: a) entropy contours
and b) surface distribution.

A remarkable behavior illustrated in Fig. 3a is the fact that
when the chosen integration surface is far enough from the
body (r/c > 4), the values of Crp, Com, Cpbm, and Cpy are es-
sentially constant and in very good agreement with one an-
other.

The values of Cp, and Cp, vary for r/c < 4 because the
integration surface does not enclose the shocks completely.
The difference between Cpyy, and Cp,,, again noted for r/c < 4,
is produced by the artificial viscous stress contribution.

The drag estimate based on Oswatitsch’s expression, Cpoews
is lower than the previously noted unique value of Cpp, Cpm,
and Cp,, This discrepancy is attributed to the first-order ap-
proximation in (s — s.) introduced to obtain Eq. (7). This
approximation produces an error that grows with M... At lower
freestream Mach numbers, the difference between the drag es-
timate based on Cp, and Cpaw tends to zero (see Fig. 4a). At
such low freestream Mach numbers, the four drag estimates
Com Com Dy, and Coosw are essentially equal (see Table 1).

The very good agreement between the drag estimates Cpy,
Com Cbm, and Cr clearly indicates that no significant improve-
ment, in terms of accuracy, results from the use of a far-field
approach with respect to a simple body-surface pressure inte-
gration. Similar conclusions have been drawn by Varma and
Caughey’ in the context of two-dimensional Navier-Stokes so-
lutions. Nevertheless, many researchers attribute the poor re-
sults obtained with body-surface pressure integration to the
discretization of the body surface into panels: the pressure in-
tegration was thought to be less accurate on this surface lead-

Fig. 3 Drag predictions based on different integration contours
—M. =0.85, a = 0.00, 160 x 40 O-grid: a) without and b) with
weighting function.

ing to unsatisfactory pressure coefficients, particularly with
coarser grids.* '° In fact, the discrepancies noted between the
pressure coefficient and the far-field coefficients are caused by
the false entropy production near the stagnation point generally
produced by Euler flow solvers.

Integration of the rate of entropy production on a surface
enclosing only the immediate vicinity of the shocks, Cpy,
and Cpo,,,» produces drag estimates that are lower than the
essentially unique value of Cpp, Com, Cpom and Cps because
such surface of integration allows removal of the drag contri-
bution associated with false entropy production near the stag-
nation point. In fact, it is this capacity to eliminate the false
entropy production contribution that represents the main ad-
vantage of drag calculation methods based on the integration
of the rate of entropy production. Furthermore, in three-di-
mensional inviscid flows (not considered here), such entropy-
based drag predictions allows one to distinguish the wave drag
from the induced drag. In contrast, only the total drag is com-
puted using body-surface pressure integration or far-field mo-
mentum-flux integration, when analyzing three-dimensional
inviscid flows.

Yu et al."' mentioned that the false entropy production is
mainly caused by inaccurate calculation of the artificial dissi-
pation terms at the body surface, and proposed to apply a
weighting function to scale the viscous dissipation terms in the
normal direction so that they are gradually turned on from the
body surface to the far field. The effects of this enhancement
on drag prediction are illustrated in Figs. 3b and 4b. It is seen
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Table 1 Summary of drag predictions, 160 X 40 O-grid

M.,

o deg

Present solution Cp (X 107

Cox

Crsw me shock

C D ek

0.74
0.76
0.78
0.80
0.82
0.85

0.00
0.00
0.00
0.00
0.00
0.00

6

9
30
89
197
461

0 6 0 3 0

4 9 4 5 4
25 30 25 22 25
84 89 84 69 84
192 196
456

Table 2 Effects of grid refinement on drag predictions, M. = 0.85, « = 0.00
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Fig. 4 Drag predictions based on different integration contours
—M. =0.78, « = 0.00, 160 x 40 O-grid: a) without and b) with
weighting function.

that the drag contribution associated to false entropy produc-
tion, represented by the differences (Cpy — Cpy),,,) and (Cposw
— Cbosw,,,)> is reduced when such weighting’ is applied. In
the present work, only the results presented in Figs. 3b and 4b
have been obtained using this enhancement. Ultimately, if all
false entropy production in the flowfield could be eliminated,

the drag coefficients Cpy, Com, Com, Ci, and Cpy), , Would be
equal so that any of these methods would be equivalent.

The behavior of the various drag estimates with respect to
grid refinement is presented in Table 2. It has been observed
that the false entropy production increases with coarser grids.
This behavior leads to higher estimates of drag on coarse grids
compared to fine ones. A correction procedure can be proposed
for the body-surface pressure coefficient that could be useful,
particularly on coarse grids. The difference (Cpy — Ciy, )
gives an indication of the contribution of the false entropy to
the total drag Cp,. A corrected body-surface pressure integra-

corr

tion coefficient Cy, is given by

Ca‘r = CDP - (CDS - CDslshock) = CD5|shock (21)

The corrected pressure coefficients are given in the last column
of Tables 1 and 2. These estimates are clearly less sensitive to
the level of false entropy production and are in perfect agree-
ment with the Cp,,__ estimates.

shock

Conclusions

In this work, eight different techniques for the evaluation of
the wave drag have been presented and implemented for air-
foils. These various techniques have been derived from the
application of Oswatitsch’s expression', Garabedian’s volume
integration®, body-surface pressure integration, and far-field
momentum-flux integration. Results are presented for the in-
viscid compressible flow over a NACA 0012 airfoil. It has
been shown that the application of Garabedian’s volume in-
tegration leads to significantly lower wave-drag estimates than
the predictions based on the other expressions. In contrast with
popular belief, it is demonstrated that, for two-dimensional in-
viscid flows considered in this paper, there is no advantage, in
terms of accuracy, of using far-field methods. No significant
differences are noted among the drag predictions based on Os-
watitsch’s expression, a momentum-flux integral, and a simple
body-surface pressure integration, provided appropriate inte-
gration surfaces are selected and false entropy production near
the body surface is negligible. However, drag prediction meth-
ods based on the integration of the rate of entropy production,
such as Oswatitch’s expression, allow the distinction of the
wave drag and induced drag in three-dimensional flows. In
contrast, only the total drag is computed using body-surface
pressure integration or far-field momentum-flux integration,
when analyzing three-dimensional inviscid flows. Drag predic-
tions based on Oswatitsch’s expression applied on a surface
containing only the shocks are less sensitive to high levels of
false entropy production because the drag contribution asso-
ciated with false entropy production is eliminated. A method
was proposed to improve the accuracy of the body-surface
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pressure integration estimates that is less sensitive to the level
of false entropy production.
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